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Note 

Numerical Solution of a Nonlinear Klein-Gordon Equation 

We compute the solutions of the equation utl - AU + m2u + guP = 0 for p odd and 
m, g > 0. Our computations show that (i) the solutions remain bounded as t + 00, (ii) 
the amplitude decreases as p increases, and (iii) the number of oscillations increases as p 
increases. Because of (i), theoretical results imply that the amplitude goes to zero like 
O(t+3 as t - co. 

1. ANALYSIS 

The nonlinear Klein-Gordon equation (NLKG) 

u tt - Au + m2u + G’(u) - 0, (1) 

4% 0) = d(x), udx, 0) = w4 (2) 

(x E W, m > 0) is probably the simplest nonlinear relativistic equation of mathe- 
matical physics. A complete understanding of it would illuminate our view of many 
other such equations. The most important property of a solution is that the energy is 
constant: 

E = s (; IA; + ; 1 Vu I2 + g u2 + G(u)) dx. 

Assuming G 3 0, each term in this expression is bounded by E for al 1 time. However, 
it does not automatically follow that the amplitude 

M(t) = m,ax I 24(.x, t)l 

must be bounded. 
The mathematical theory of (1) consists of three major parts. Assume arbitrary 

initial data d(x) and Y(X) which are smooth and small at infinity (so that E is finite). 
Assume G’(u) = 1 u 19-l U. (i) If p < 5, a unique smooth solution exists for all time 
(see [2]); its amplitude is bounded. (ii) If p > 5, a weak solution exists for all time 
(see [5]), but it is not known whether it is unique. If a weak solution has bounded 
amplitude, it is smooth and unique. (iii) For anyp > 813 and for solutions of bounded 
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amplitude, there is a scattering theory; in particular, they decay uniformly as fast as 
free solutions: 

M(l) < c(l + 1 t I)-312 (4) 

(see [3]). The major gap in the theory is the boundedness of the solutions whenp 3 5. 
Not only is NLKG a model for other relativistic physical systems, it is also a 

prototype of a large class of nonrelativistic systems which find themselves in the same 
predicament as in (ii) above. The most famous example is the nonstationary Navier- 
Stokes equations in three space dimensions, where global existence was proved by 
J. Leray over four decades ago but uniqueness of the weak solutions is still an open 
problem. 

We have computed some solutions of NLKG for various values of p. The computed 
solutions are indeed bounded. 

D. Jesperson and J. Rauch have done similar computations which are in general 
agreement with our results (personal communication). 

For the computation we consider radial solutions of (l), u = U(T, t), Y = / x I and 
smooth initial data 4, Y of compact support. We take m = 1 and G’(u) = / u jp--l U. 
Thus 

2 
Utt - UT, - ; ur+u+Iul~--lu=o. (5) 

Puttingv = ru, 

vtt - vTr + v + rlep / v I 9-1 v = 0, O<r<co, 

v(0, t) = 0. 

The energy is 

E = 4~ 

E’ = 

UT2 + u2) + * j u lP+l/ r2 dr = 49~E’, 

vr2 + u”) + lvl*+l )& 
(P + 1) P-l! 

because 

VP 2 = (ru, + u)” = r2uT2 + (ru3, . 

From (7), we have 

(z+ = 2v v, < vv2 + v2, 

v2 < 
I 

m (v,Z + v”) dr < 2E’. 
7 

(7) 

Hence I u(r, t)l < (2E’)l12/r. Thus, if there were an unbounded radial solution, it 
would have to become unbounded near the origin r = 0. 
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2. COMPUTATION 

We used almost the simplest of all finite-difference schemes: central second differ- 
ences for the terms vtt and v,, . The scheme is 

on+1 3 - 2lJ.j” + Vj”-’ Vy+l - 2Vj” + vi”-1 

(AtI2 (Ar)’ 

+ ; [vjn+’ + vj”-‘I + o’&1 3 
G(v,“+> - G(vjn-‘) = o 

vv+l - vy-1 . 3 

Here G’(v) = I v ID--l v, G(v) = I v I “+‘/( p + 1). 
When we tried the simpler explicit scheme with the nonlinear term G’(vin), we found 

some computed solutions rapidly blowing up, even in the case G’(v) = v3. This 
indicates a numerical instability because Jorgens’ theorem implies the boundedness of 
the solutions, as mentioned above. 

On the other hand, for scheme (8) the computed solutions are bounded: see below. 
In fact, scheme (8) has the advantage that there is a discrete energy which is constant. 
We thank K. W. Morton for his help with the spatial derivative term. The discrete 
energy is 

+ 1~ (U;“)” + (Vjn)’ + 2 G(v;“) + G(vj”) 

2, 2 j 2(j Ar)p-1 * (9) 

If (8) is multiplied by $(vF+l - vj”-l), the identity En = En-1 results. Thus E,, = E, 
for n = 0, 1, 2 ,..., and the scheme appears to be stable. 

If G = 0, the equation is linear, the scheme is explicit, and it is stable if 

At 2 t-1 Ar 
< 1 + ; (At)2. l (See [4].) 

At each time-step, the scheme (8) requires solving a simple functional equation for 
the unknown vT+l. We used Newton’s method to accomplish this. We chose the mesh 
sizes At = Ar = 0.002. 

For G’(v) = 1 v ID-l v, p = 2, 3,4 ,..., the computed solutions appear finite and 
stable. For G’(v) = v2, ZJ*, etc., the computed solutions blow up in a finite time. This 
behavior corroborates the mathematical theory (see [l]). 

In Fig. 1 is presented a typical time evolution for the nonlinear term G’(U) = a7 at 
successive time intervals, t = 0.00, 0.04, 0.08, 0.12, 0.16, 0.20. The solution u = r-lv 
is plotted versus r = 1 x 1. The initial data for this run are 4 = h(r), Y = h’(r) + 
h(r)/r, where 

h(r) = 5 exp lOO[l - (1 - (1Or - 1)2)-1], f(r) = r/?(r). 



274 STRAUSS AND VAZQUEZ 

IL 

5- 

0 

-5. 

-1ot 
.OO 

u 

t = .oo 

1’ / ‘\ 

t =.08 

I 

i I\ 
) (I [*, //------...--. 

I ( 

t =.04 

i 
I\ 

-j / 
:; 

20 .L 

t =.I2 

I:--.-- --- - 
t =.20 

FIG. 1. A typical solution at successive times for G’(u) = ~2. 
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That is, uju =f(j dr) and ujl =f((j + 1) dr). Thet energy is En = 67.85. In Fig. 1 
we can see the initial data immediately breaking up into outgoing and incoming parts. 
The incoming part resolves into oscillations, particularly as it approaches the origin. 
By the time t = 0.16 the initial data have had a chance to reflect at the origin, all the 
oscillations seem to have become outgoing and no new oscillations appear. It is also 
clear that the peaks are moving at approximately speed one. Most of the clearly 
identifiable peaks move at precisely speed one, according to numerical data (not 
shown); this would be expected in the linear case. These general characteristics of the 
evolution in time are common to all the solutions which we ran. So in the succeeding 
figures, we only present solutions at the time t = 0.20 after all the oscillations have 
been produced. 

Our computations for this example also show that the fourth term in En drops by 
a factor of 100 from t = 0.120 to t = 0.144 and thereafter becomes even smaller. 
This shows that the wave becomes linear as soon as the initial data has reflected at the 
origin. The computations also show that the first term in E, , the kinetic energy, 
approaches exactly $E, (“equipartition of energy”). We have also used the solution 
at times t = 0.160 and 0.162 as initial data to solve the linear equation (G = 0) and 
we find a difference of less than 1 oA from the nonlinear case. 

Next we study the effect of the nonlinear term on the solution. In Fig. 2 we present 
the graphs of the solutions at time t = 0.20 for the initial data 4 = 0 and Y = lOOh 
for six different equations: G’(u) = 0, z?, u5, u7, us and sinh(5u) - 5u. The very simple 
linear wave is almost mimicked in the cubic case in spite of amplitudes significantly 
larger than one. In fact, the maximum amplitude in all space and time, max,,, I U(X, t)l, 
is 49.98 for G’(u) = 0, 47.59 for G’(u) = u3, 19.09 for u5, 9.74 for u7, 6.56 for us, and 
3.72 for sinh(5u) - 5~. All these maxima occur at r = dr = 0.002 and near 
t = 0.100. Thus the amplitudes decrease with p and the number of oscillations 
increase with p. In these respects the graphs suggest that the last example may be 
regarded as a high power. The energies are En = 31.2934 for the powers and 
En = 31.3173 for the last case. 

In the left half of Fig. 3 are the solutions for t = 0.20 for the initial data $ = h(r) 
and Y = 0 for the three nonlinear terms G’(u) = UP, p = 3, 5,7. In the right half of 
Fig. 3 are the solutions for t = 0.20 for the initial data 

4 = 4-1 for r 3 0.10, 

Y = 0. (10) 
=5 for r < 0.10, 

In each case there is a stark contrast between the waves for p = 3 and p = 7. The 
cubic case ( p = 3) is only slightly different from the linear case (graph omitted). For 
initial data of moderate size the cubic nonlinearity seems to have only a minor effect. 
The nonlinear effect seems to become pronounced only aroundp = 4 or 5. Of course, 
for very small initial data the waves will look linear for any value of p. 

We offer the following heuristic explanation for these results. A solution with 
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FIG. 2. Solutions for G’(u) = 0, us, us, u’, ug and sinh(5u) - 5u at time t = 0.20 for identical 
initial data at t = 0. The nonlinear term is indicated in the upper-right corner. 
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energy E = uN2 + z.P+l/( p + 1) of the ordinary differential equation utt + up = 0 
(p odd) is periodic with period 

T = 4(2E)-‘/” ((p + 1) E)llcp+l) 
s 

l(1 - @+1)-v dw. 
0 

Hence, if E > 1 is fixed, the period decreases as p increases. The kinetic (utt) and 
interaction (up) terms provide the dominant effect for a while. After a certain time T, 
the waves which were initially generated have had a chance to reflect at the origin and 
become outgoing. As soon as they do so, they spread out spatially. The term du 
becomes important and seems to swamp the interaction term. From that time on, 
the wave appears linear and so it decays like 0(N2). 

A heuristic explanation for the decay rate is as follows. Each term in the energy (3) 
is bounded by the constant E. In particular, the third term looks like 

s 
u2 dx N const t3M2(t) 

for large t since the radius of the support of u increases proportionately to t. Thus 
max, 1 u I2 looks like O(t-3). Arguing similarly with the last term in (3), we can say 
that (for G’(u) = up) 

I up+l dx N const t3Mp+l(t) 

is bounded. But, in a region where 1 u I > 1, 1 u [ p+l increases with p. Hence the 
amplitude should be smaller for larger p. The above estimates assume that, unlike 
waterspouts on the ocean surface, the waves have no localized large amplitudes. We 
do not know how to justify this assumption rigorously unless p < 5. 
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